
Reg~i~xiz~ng the problem of games encounter of motloru 999 

dq I dr < - f and imposing certain other restrictions on the function t) (t J . However, 
this complicates determination of the generalized solution Y* ItI of Eq. (1.1). 
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STABILITY OF MOTION OVER A FINITE TIPE IN~RVAL 

PMM Vol. 32, N36, 1968, pp. 977-986 

K. A. ABGARIAN 

(Receive!l”gyF I, 1968) 

A family of necessary and sufficient conditions for the stability and instability of motion 
over a finite time interval is constructed. This is made possible by a generalization of 

Kamenkov’s formulation of the problem of stability over a finite time interval. 

1, In his investigation of mechanical systems whose perturbed motion is described by 
the equations dZ 

2 = X,(f; 31,. . *, &tn) 
dt 

(i=i,...,n) 0-Q 
where Xi are real functions of real variables which vanish for Z$ = 0 (i = I,,.., n) 
and can be expanded in series in &hole nonnegative powers of Xi in the neighborhood of 
the origin (Xi = #), Kamenkov introduced the following definition of stability of motion 
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over a finite time interval [l]. 

If the differential equations of perturbed motion (1.1) are such that for a sufficiently 
small positive A the quantities Z, considered as functions of time satisfy the condition 

n 

2 (o&t + - * * + %“&I)* Q A (1.2) 
04 

over a finite time interval [to, t, +L\t] provided the initial values zioof these func- 
tions satisfy the condition n 

2 (%SIO + --. + asn~no)2< A (det(ad#O) (i-3) 

then the unperturbed motion is stable over the time interval Ata otherwise the motion 
is unstable, i. e. At = 0. 

On the basis of the above definition Kamenkov obtained the conditions of stability and 
instability of unperturbed motion in the first approximation. According to these condi- 

tions the problem of stability of motion in noncritical cases is resolved by the signs of 

the real parts of the roots of the characteristic polynomial of the first-approximation 
equations at the initial instant b. 

Instead of the constant domain of limiting deviations (1. a), Lebedev [Z and 31 used 
the fixed-sign function V (f; ~1, . . ., E,) which depends explicitly on time to introduce 
the variable domain V(1; iI*. . .I ti <A (1.3 

In this way he obtained sufficient conditions of stability which take account of the 
character of variation of the coefficients in the equations of perturbed motion with re- 
spect to the time f. This entails a rigid restriction on the diameter of the domain, i. e. 
on the upper bound of the disturbances between any two points of the domain ; consider- 
able leeway still remains in the choice of the remaining dimensions. 

We shall introduce necessary and sufficient conditions of stability and instability of 

motion in the following formulation. 
Definition. If the equations of perturbed motion are such that for a sufficiently 

small p > 0 any solution z (i) of the equations whose initial value fg = z (i,) 

conforms to the inequality 
(C cto) x0* G (to) ~0) < P (1.5) 

satisfies the condition 
(G (0 ~9 G (9 4 Q P (4.6) 

(where G (1) is a given bounded matrix) over some finite interval [to, to + A11,then 
the unperturbed motion is stable relative to domain (1.6) over the interval [t,, to‘+ 
+ A tl; otherwise it is unstable, i.e. At = 0. 

The domain of limiting deviations 5, (S = I,. . .., n) (i. e. of the elements of the 
column matrix z) is given here by means of a nonnegative function , 

v (t, I) 3 (G (t) x, G (t) z) 

The stability of motion relative to domain (1.6) will be called “uniform” over the 

interval If,, ts) if the unperturbed motion is stable for all f, E [ts, t2). 

2, Let the equations of perturbed motion in vector-matrix notation be written as 

dz / df = u (f) 5 + H (t, 2) (2.1) 

where U is a square matrix of order n, and z and H are column matrices. The elements 
of the matrix H (i. e. the nonlinear functions of the deviations z,) are such that 
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lim If t’* ,x) = 0 

*-en ll=ll (2.2) 

uniformly over 2 over some interval It,, T] 
Let us assume that the matrix cr is differentiable with respect to 2 and that it is of 

simple structure. There then exists a nondegenerate and differentiable matrix h’ which 
transforms the matrix CT into diagonal form 

K-r (2) u (2) K (1) = A (2) z diag (h, (%-.., 31, (0) (2.3) 

The diagonal elements of the matrix .\ are the eigenvalues of the matrix u, and the 
columns of the matrix II are its eigenvectors. 

Assuming that the coloumns Ki, (fT = 1,. .., ?Z) of the matrix K are normalized 

(e. g. that their Euclidean norm is equal to unity) and setting 

Y (2, 2) .3 (K-1 (2) t, K-1 (2) 2) (2.4) 

we define the domain of limiting deviations as 

(K-l (2) t, x-’ (2) J$ <p (2.51 

Geomertically, domain (2.5) is an n-dimensional ellipsoid bounded by tile surface 

(K-’ (2) S, K-1 (2)X) = p (2.6) 
Each of the 2~8 rays 

z= *KG(t)5 (0=1,..., =; o<r<xg 

intersects surface (2.6) once for the parameter value S = 6. The points of intersec- 
tion lie at a constant distance ]I’;; from the origin (z = 0) , In fact, 

Let us investigate the conditions of stability and instability of unperturbed motion 
relative to domain (2.5), Setting 

we have 
3 = K (2) y (2.7) 

Hence, 

In the new variables the equations of perturbed motion become 

g = A (I) y - K-’ (f) dq y -t_ K-1 (I) H (I, A-y) (2.10) 

From (2.10) we find that 

dllyU 
-Jr-= i Hek, K + !S , (2.H) 

a-1 
+ zq$(pK-W + H*K*-‘y) 

Here 
p = _f (K-Id; +d!! K*-s) 

and ge (a = i,..., nj are the elements of the column matrix y. 
From Expressions (2.9) and (2, fl), we find that the derivative of positive-definite 

function (2.4) with respect to 2 computed by way of the equations of perturbed motion 
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is given by 
IdY a --= X ~eLI9Js+y*~y + 
2dl 0-1 

$ (y*K-sH + H*V-‘y) (2.42) 
Let us set 

p V) = mar, (Re Au WI 
By “min (2) and Vmax (t) we denote the minimum and maximum eigenvalues, respec- 

tively, of the Hermitian matrix P. 
As we know, 

Theorem 2.1. If 

(2.13) 

(2.14) 

then unperturbed motionfthe trivial solution of Eq. (2.1)) is stable over the finite inter- 

val Its, t, + A tf. 
Proof. 

H (1. KY) --, ,, 
IlYi 

as y-0 (2.15) 

uniformly in 1 over the segment 10, T) . 

by virtue of condition (2.2). since // A // is a bounded quantity and since 

~zn~~~-~~Y~~O as: Y+O 

Taking account of (2.13) and (2.15), we find from (2.12) that 
i dV -- 3 & G (II (r) t vmas (Q) Ii Y IP + 0 (ii Y ?) 

From this we see that if inequality (2.14) holds, then for sufficiently small i, y jj at the 

point t = TV (and, by continuity, within some finite interval 14. 4 + A81 C 14, T] ) , 

we find that dV / dt < 0, which proves the Theorem. 
Theorem 2.2. If 

P @B) + Vmin @a) > 0 (2.16) 

then unperturbed motion (the trivial solution of Eq, $2.1)) is not stable over the finite 

time intervalit,, t, + At], i.e. At = 0. 
proof. Let -us integrate (2.11). We obtain , 

If 

then for sufficiently small ; Y: the sign of the integrand is the same as that of the func- 
tion Q (1. Y). 

Let us assume that 
I (4) = Re A, (4) 

Let us consider the particular solution to = K (1) gD of Eq. (2. I) as determined by the 

initial conditions Y* ($1 = VS. Ye (Q = 0 (e#*) (2.18) 

By virtue of (2.13),(2.16) and (2.18) we have 

p (4. Y” (41) > CI (4) + Qa (4) > 0 
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Hence, for sufficiently small p at the point & the integrand function in Eq. (2. I?) is 
positive. By continui~, it is also positive in some neighborh~d of this p&nt. Hence, in 
this neighborhood we have fl (f. 2‘) 

dt =2n Y’II 

Thus, if inequality (2.16) is valid, then there are particular solutions along which in 

the neighborhood of the point b we have 

i,’ (r. = (4) > k’ (to, 2 (to)) (2 > to) 

which means that condition (1.6) is not fulfilled. The Theorem has been proved. 
Theorem 2.3. If 

p (to) + Vmin (f0) < 0 < p (to) t- Vmax(t0) (2.19) 

then unperturbed motion (the trivial solution of Eq. (2.1)) may not be stable over a fin- 
ite time interval. 

P roo f, Relations (2.19) and (2.13) admit of the existence of a particular solution 

z” = KY” which satisfies the equations 
rP (to, Y” (GA) = 0. Ilv” WJi = fi 

The sign of the integrand in Eq. (2.17) for this solution is determined by the sign of 
0 (I! y*l), so that depending on the properties of the nonlinear terms for t = to (and, by 

continuity, within some neighborho~ of the point &) the integrand may be positive. 
Hence, in this neigh~rhood dV (t, zm) I dt > 0, which means that inequality (1.6) is 

not fulfilled. 
Therefore, 

P (lo) + Vmax (to) < 0 is a sufficient condition for stability 

ts (to) + %nfll (44 < 0 is the necessary condition for stability 

t, (k) + Vmln (to) > 0 

(2.20) 
is a sufficient condition for instability 

p (lo) + vmaI (to) 2; 0 is the necessary condition for instability 

In the special case where U = con&, we have Vmal,min=O, since K = const and 
P = 0, and since the conditions (2.20) coincide with the corresponding conditions for 

stability and instability obtained by Kamenkov. 
The disposition of the stability and instability domains in the plane of the eigenvalue 

X as determined by the signs of the eigenvalues vnlar and vmio is shown for the general 

case in Fig. 1 (the stability domains are marked with a plus sign. the instability domains 
with a minus sign). We see that the motion may be stable even when the eigenvalues of 

the matrix U includes values with positive real parts (Fig. lc) i conversely, unperturbed 
motion may turn out to be unstable even when the real parts of all the eigenvalues are 

negative (Fig. la). 
Conditions (2.20) do not solve the prob- 

lem of stability if 

--lnnl>P>-%ax (2.21) 

The corresponding strips in Figs. la, lb 
and lc are shaded. 

Fig. 1 

In the next Section we shall describe 
a method for constructing a family of con- 
ditions similar to (2.20) whith whose aid 
the “strip of uncertainty” (2.21) can be 
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narrowed substantially, especially in those cases where the coefficients of the first-appro- 

ximation equations are slowly varying functions of t, 

3, Instead of (2.1) let us consider the more general equation 

dz: / dt = u (T) 2 + H 6 z) (3.1) 
where z = t!t is the so-called “slow time” and E is some real parameter. When & = 1 
Eqs. (2.1) and (3.1) coincide. 

The nondegenerate transformation 

t = Kfrn) (T, e) y (3.2) 
transforms Eq. (3.1) into (X3) 

dtJ/ dt = Atrn) (*, e) y - K@+t (“c, e) .\-lrn’ (f, e) y -f /(r@+t (t, E) Ii (t, 3P’y) 

where 

S@) (t, e) = edK’“)(t, e)ldr- I’ (r) lP)(z, e) f K’“!(T, 8) A\‘“‘(%, e) (3.4) 

Let us assume that U (t) is a matrix which is differentiable l times on the segment 

[O, L] . Then, making use of the algorithm given in [4], we can construct a transforma- 
tion (3.2) such that the matrix .l’m) has a diagonal, or at least a quasidiagonal structure, 
and the matrix NSrnj satisfies the condition 

lim m PP’ (I, e) -_ () (nr=O, I.2 ,...* 2-l) 
w 

Let us limit ourse;zs to Ge case where U has only simple eigenvalues on IO, L] . 
Here the matrices Et”! and A’“) can be constructed in the form of finite sums 

/(WI = (p . . . Jp), Al”] = tfiag ()$I . . . AL’]) 

Here K,lLI are column matrices and Ad”1 are scalar functions. 
Let Kl”I and Al’I (k = 0, I,..., IT&) be such that 

#rJjpl ‘=-- Ji’olp 

where 

It is now easy to verify that 

(3.6) 

(3.7) 

(3.8) 

(3.9 

(3.10) 

(3.11) 

and requirement(3.5) is fulfilled provided Kin, nliI (i = I,..., m) are bounded. 
Equation (3.8) is satisfied identically if 

@I G &, 3 *I s h 5 @=I,. . ., n) (3.12) 
As in the previous section. we shall assume from now on that the Euclidean norm of 

the eigenvectorsR, is equal to unity. By virtue of (3.7) and (3.10) we have 
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Each equation of (3.9) breaks down into n independent matrix relations, 

UKp’ -_ j$‘& + K,?.!k] f D15”‘“’ .I &=I,. . ., n) (3.14) 
The general solution of Eqs. (3.14) is of the form 

Kfk] I=: p D[k-” -1- &#], a c 0 @’ =: - M @k-tl a a (? = t i * * -, n) 

(3.15) 

Here &f, (S = i,..., n) are the rows of the matrix .tf E K-l, and Qo~k](~ = i, 
*..* ?z) are arbitraty bounded scalar functions of T. This arbitrariness must be restricted 

by the condition of existence of derivatives with respect to T of order up to n- h + 1, 
inclusive 

The matrix D,t”‘J does not depend on K,f’l, A&‘1 (r > k), so that in computing 
Kdf’l and .\,[“I we assume that this matrix is already known. 

Formulas (3.15) are recurrent. They can be used to determine successively all of the 
terms of finite sums (3.6). 

The arbitrariness involved in the construction of xfm) and n(m) can be used to nor- 

malize the columns of the matrix Ktrn). Since 
m 

it follows that the square of the norm of the column K,,r”) of the matrix Kfrn) is 

The arbitrary functions qotsk) (k = I,..., nZ) can be chosen in such a way that the 

first double sum in Eq. (3.16) vanishes. 
In fact, k k-s 

23 & 
[@--+@I = Kp”K, + K,*j@ + 2 K!““l*@ = 

a@ a-1 
k-l 

With qef’] (I? = I,..., m) the norm of the columns of the matrix K(“‘) is equal to 
unity to within quantities of the order em” . 

Turning now to the establishment of the conditions of stability and instability of the 
trivial solution of Eq, (3. l), we define the domain of limiting deviations by the relation 

(IO’“)-* (T, E) 5, K(m)-1 (T, E) 2) <‘p (3.1i) 
Geometrically, domain (3.17) is an n-dimensional ellipsoid bounded by the surface 
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(pm k-1 (T, E) 2, mm)-* (T, e) z) = p (3.18) 
Each of the &8 rays 

~=*A_$m’(z.,e)s (3=1,...,%o<s<=) 

intersects surface (3.18) for the value S = l/p. To wit_hin quantities of the order En”’ 
the points of intersection lie at the constant distance VP from the origin (2, = 0) . 

The conditions of stability and instability of the trivial solution of Eq. (3.1) relative 
to domain (3.17) are determined by the following theorems whose proof is entirely ana- 

logous to the proof of Theorems 2.1-2.3. Let 

.C)(m) (r, e) = mas, (He lP(z, e)) (3.19) 
where 

(s=f,.. .* n) 

are the diagonal elements of the diagonal matrix A(“) (f, 8); 

$$,h, 8); d$(r, 8) 
are, respectively, the minimum and maximum eigenvalues of the Hermitian matrix 

pm, = _ I&mP’#f% + (KWW#m))8~/ hm+l 

By virtue of Eq. (3.11) the matrix PC”) is regular relative to 8 in the neighborho~ 
of the point e = 0. 

Theorem 3.1. If 
#“) @a, e> + ~m+*~!$x @a, 8) < 0 (To,= cttt E [o, t]) 

then the trivial solution of Eq. (3.1) is stable on the finite interval Ita, te + AtI. 

Theorem 3.2. If 

l.Pl (Tao, e) + ern”Vg$ (To, 8) > 0 ( %J = 8to E (0, L]) 

then the trivial solution of Eq. (3.1) cannot be stable over the finite interval Ito, to+ 

+Atj, i.e. At = 0. 
Theorem 3.3. If 

No = 8fo E (0, Ll) 

then the trivial solution of Eq. (3.1) may not be stable on the finite interval [to, ts + 

+ Ad. 

4, Applying the results of Section 3 to Eq. (2.1). we obtain the following conditions 
of stability and instability of unperturbed motion : 

p) (44 + 42x (to)< 0 is a sufficient condition for stability 

P(m) (to) t VSh (1,) .< fj is the necessary condition for stability 
(4.Q 

lPi’ (to) i- m,n v’?’ (to) > 0 is a sufficient condition for instability 

pfyn) (to) f $2X (to) z 0 is the necessary condition for instability 

Here p’:)(f) = /I(~) (t, e)I_,, v%b, mar (I) = &!I. max (TIC, 8) it,a (4.2) 

Inequalities (4.1) constitute a complete family of necessary and sufficient conditions 

corresponding to the numbers m = 0, i, 2,..., i - i. Every m is associated with its 
own “strip of uncertainty”, 

fm) - v:;:, > P)> - %ax (4.3) 
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For m = 0 the conditions (4.1) coincide exactly with simplest conditions (2.20). and 
strip (4.3) coincides with strip (2.21). 

Taking m = I, 2,..., in succession, we can expect substantial narrowing of the strip 
of uncertainty. Computations carried out for certain real objects showed that already for 
m = i the eigenvalues vii, and v$, are quite small (on the order io’-‘, 10-s) ~ the 
strip practically narrowing into a line. It is likely, therefore, that one need go no further 
than conditions (4.1) for m = 1. 

We call the case where v&T:, m = 0 and p(m) = 0 “critical“, since the stability 
problem is then unsolvable in the first approximation. 

The case where ~(~1 satisfies (4.3) and 1 v$i 1 + 1 ~~~~ I# 0, can be called “pro- 
visionally critical”, since the possibility of solving the problem from the first approxima- 

tion is not excluded. 

5, Estimates of the time interval At during which unperturbed motion is stable, are 
of interest for practical purposes. 

Let 
Ir’“’ (0 + vF&(t)<O UE tto,hlc Ito9 T1, [to* m 

P w + vg&) = 0 
(5.4) 

The interval At can therefore be estimated from the inequality 

Ai < t, - t, (5.2) 

Note. It is clear that unperturbed motion is u~formly stable over any finite interval 

(1’, t”) CT f&r, t,l, where 1, satisfies conditions (5.1). 
The interval At can be estimated more precisely from inequality (5.2) by using the 

value of i, given by the conditions 

s (p)(f’) + v’&, (f’))df’< 0 (f E [to, fl) c= IfOP Tl, vo9 Ll) 
‘0 

I. 

1 . (p’“‘)(t’) + v’m”a! (f’))df’ = 0 
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